Doxorubicin caused apoptosis of mesenchymal stem cells via p38, JNK and p53 pathway.
نویسندگان
چکیده
BACKGROUND/AIMS Doxorubicin is a widely used chemotherapeutic agent, but its clinical use is restricted because of a high risk of cardiotoxicity. Bone marrow-derived mesenchymal stem cells (BMSCs) may repair ischaemically damaged myocardium through transdifferentiation and paracrine action. The aim of this study is to investigate if doxorubicin causes the apoptosis of BMSCs and in turn impairs its healing ability. METHODS BMSCs were exposed to doxorubicin, and cell apoptosis was determined by western blot and stainings. RESULTS Doxorubicin reduced the survival ratio and caused the apoptosis of BMSCs, with the increase of intracellular ROS level and depolarization of mitochondrial membrane potential. The ROS scavenger NAC abrogated these consequences. Moreover, doxorubicin markedly activated phosphorylated ERK, p38 and JNK proteins in BMSCs. The specific inhibitors for p38 (SB203580) and JNK (SP600125) may abolish doxorubicin-induced apoptosis of BMSCs but the specific ERK inhibitor (PD98059) not, indicating p38 and JNK activation contribute to BMSCs apoptosis. Also, the phosphorylated and total p53 proteins were increased in doxorubicin-treated BMSCs. Proapoptotic cleaved caspases-3 was upregulated and antiapoptotic Bcl-2 protein was reduced in doxorubicin-treated BMSCs. At last, ELISA assay showed that doxorubicin treatment reduced the VEGF and IGF-1 released by BMSCs. CONCLUSION Taken together, doxorubicin caused BMSCs apoptosis associated with p38, JNK and p53 pathways.
منابع مشابه
Cyclic AMP-induced p53 Destabilization is Independent of CREB in pre-B Acute Lymphoblastic Leukemia Cells
Elevated cAMP levels in B-cell precursor acute lymphoblastic leukemia (BCP-ALL) cells attenuate the doxorubicin-induced p53 accumulation and protect cells against apoptosis. cAMP responsive element binding protein (CREB) is a cAMP-stimulated transcription factor that regulates genes whose deregulated expression cooperatein oncogenesis. In the present study, we investigated the role of CREB on i...
متن کاملCuO nanoparticles induce cytotoxicity and apoptosis in human K562 cancer cell line via mitochondrial pathway, through reactive oxygen species and P53
Objective(s): This study focused on determining cytotoxic effects of copper oxide nanoparticles (CuO NPs) on chronic myeloid leukemia (CML) K562 cell line in a cell-specific manner and its possible mechanism of cell death. We investigated the cytotoxicity of CuO NPs against K562 cell line (cancerous cell) and peripheral blood mononuclear cell (normal cell). Materials and Methods: The toxicity w...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملاثر سینرژیستی ایندول تری کربینول با دوکسوروبیسین در افزایش القای آپوپتوز بر رده سلولی لوسمی لنفوبلاستیک حاد (NALM-6)
Background and Aim: Indole-3-carbinol (I3C), found in Brassica species vegetables, exhibits antitumor effects. It has been shown that I3C induces apoptosis in various cell types through inactivation of the nuclear factor-kappa B (NF- k B) pathway. Anthracyclines such as doxorubicin, is widely used in the treatment of hematological malignancies, induce apoptosis in tumor cells via DNA damage and...
متن کاملReactive oxygen species mediate TNF-α-induced inflammatory response in bone marrow mesenchymal cells
Objective(s): It is generally believed that the inflammatory response in bone marrow mesenchymal stem cells (BMSCs) transplantation leads to poor survival and unsatisfactory effects, and is mainly mediated by cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α). In this study, we explored the mechanisms underlying the TNF-α-induced inflammatory ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology
دوره 32 4 شماره
صفحات -
تاریخ انتشار 2013